Semantic Metadata

A Tale of Two Types of Vocabularies
What is semantic metadata?
Semantic relationships in the NY Times

Negotiations With Iran Over Nuclear Program May Resume

WASHINGTON — The United States and the European Union signaled on Friday that negotiations with Iran over its nuclear program could soon resume for the first time, even as a telecommunications network vital to the global banking industry prepared to expel Iranian banks.

While senior American and European officials stopped short of declaring a diplomatic breakthrough, Iran dropped previously unacceptable preconditions for talks in a letter this week from its senior nuclear negotiator, Saeed Jalili, who declared his country’s “readiness for dialogue” at “the earliest possibility.”

After weeks of official bluster, ominous threats of military action, and arrests of journalists and opposition leaders, there was a sense of relief that the world’s most dangerous standoff was temporarily on hold.
Linked data cloud
Most widely used vocabularies in the linked data cloud (as of 9/11/2011)

- Dublin Core is the top vocabulary in the linked data cloud

<table>
<thead>
<tr>
<th>Vocabulary prefix</th>
<th>Vocabulary link</th>
<th>Number of usages in data sets</th>
<th>Data sets that use the vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc</td>
<td>http://purl.org/dc/elements/1.1/</td>
<td>92 (31.19 %)</td>
<td>Data sets that use dc</td>
</tr>
<tr>
<td>foaf</td>
<td>http://xmlns.com/foaf/0.1/</td>
<td>81 (27.46 %)</td>
<td>Data sets that use foaf</td>
</tr>
<tr>
<td>skos</td>
<td>http://www.w3.org/2004/02/skos/core#</td>
<td>58 (19.66 %)</td>
<td>Data sets that use skos</td>
</tr>
<tr>
<td>geo</td>
<td>http://www.w3.org/2003/01/geo/wgs84_pos#</td>
<td>25 (8.47 %)</td>
<td>Data sets that use geo</td>
</tr>
<tr>
<td>xhtml</td>
<td>http://www.w3.org/1999/xhtml/vocab#</td>
<td>19 (6.44 %)</td>
<td>Data sets that use xhtml</td>
</tr>
<tr>
<td>akt</td>
<td>http://www.aktors.org/ontology/portal#</td>
<td>17 (5.76 %)</td>
<td>Data sets that use akt</td>
</tr>
<tr>
<td>bibo</td>
<td>http://purl.org/ontology/bibo/</td>
<td>14 (4.75 %)</td>
<td>Data sets that use bibo</td>
</tr>
<tr>
<td>mo</td>
<td>http://purl.org/ontology/mo/</td>
<td>13 (4.41 %)</td>
<td>Data sets that use mo</td>
</tr>
<tr>
<td>vcard</td>
<td>http://www.w3.org/2006/vcard/ns#</td>
<td>10 (3.39 %)</td>
<td>Data sets that use vcard</td>
</tr>
<tr>
<td>sioc</td>
<td>http://rdfs.org/sioc/ns#</td>
<td>10 (3.39 %)</td>
<td>Data sets that use sioc</td>
</tr>
<tr>
<td>cc</td>
<td>http://creativecommons.org/ns#</td>
<td>8 (2.71 %)</td>
<td>Data sets that use cc</td>
</tr>
<tr>
<td>geonames</td>
<td>http://www.geonames.org/ontology#</td>
<td>6 (2.03 %)</td>
<td>Data sets that use geonames</td>
</tr>
<tr>
<td>frbr</td>
<td>http://purl.org/vocab/frbr/core#</td>
<td>6 (2.03 %)</td>
<td>Data sets that use frbr</td>
</tr>
<tr>
<td>xsd</td>
<td>http://www.w3.org/2001/XMLSchema#</td>
<td>6 (2.03 %)</td>
<td>Data sets that use xsd</td>
</tr>
<tr>
<td>time</td>
<td>http://www.w3.org/2006/time#</td>
<td>5 (1.69 %)</td>
<td>Data sets that use time</td>
</tr>
<tr>
<td>event</td>
<td>http://purl.org/NET/c4dm/event.owl#</td>
<td>5 (1.69 %)</td>
<td>Data sets that use event</td>
</tr>
<tr>
<td>dbpedia</td>
<td>http://dbpedia.org/resource/</td>
<td>5 (1.69 %)</td>
<td>Data sets that use dbpedia</td>
</tr>
<tr>
<td>gr</td>
<td>http://purl.org/goodrelations/v1#</td>
<td>4 (1.36 %)</td>
<td>Data sets that use gr</td>
</tr>
</tbody>
</table>

http://www4.wiwiss.fu-berlin.de/lodcloud/state/#structure
What is Dublin Core?

- Metadata scheme that provides enough information for any user, tool, or program to find and use any piece of content.

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Enabled Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject metadata – What, Where & Why: Subject, Type, Coverage</td>
<td>Use metadata – When & How: Date, Language, Rights</td>
</tr>
<tr>
<td>Asset metadata – Who: Identifier, Creator, Title, Description, Publisher, Format, Contributor</td>
<td>Relational metadata – Links between and to: Source, Relation</td>
</tr>
</tbody>
</table>

http://dublincore.org/documents/dces/
Linked data cloud characteristics (as of 9/11/2011)

http://www4.wiwiss.fu-berlin.de/lodcloud/state/#structure
Types of Vocabularies

- In the linked data cloud, there are two types of vocabularies:
 - Concept schemes – metadata schemes like Dublin Core
 - Semantic schemes – value vocabularies like taxonomies, thesauri, ontologies, etc.
Types of semantic schemes

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonym Ring</td>
<td>‣ A set of words/phrases that can be used interchangeably for searching.
 ‣ Example: Hypertension, High blood pressure</td>
</tr>
<tr>
<td>Controlled Vocabulary</td>
<td>‣ A list of preferred and variant terms, with defined hierarchical and associative relationships. A taxonomy is a type of controlled vocabulary.
 ‣ Typically used for names of countries, individuals, organizations</td>
</tr>
<tr>
<td>Taxonomy</td>
<td>‣ Identifying and naming things, and arranging them into a classification according to a set of rules.
 ‣ Often understood to mean biological classification, but can be applied to naming and classifying anything.</td>
</tr>
<tr>
<td>Classification Scheme</td>
<td>‣ An arrangement of knowledge that does not follow taxonomy rules.
 ‣ Usually enumerated; e.g., Dewey Decimal Classification</td>
</tr>
<tr>
<td>Thesaurus</td>
<td>‣ A tool that controls synonyms and identifies the semantic relationships among terms.</td>
</tr>
<tr>
<td>Ontology</td>
<td>‣ Resembles faceted taxonomy but uses richer semantic relationships among terms and attributes and strict specification rules.</td>
</tr>
</tbody>
</table>
Semantic Schemes: Simple to Complex

Semantic Schemes

- Synonym Ring
- Controlled Vocabulary
- Taxonomy
- Classification Scheme
- Thesaurus
- Ontology

Equivalence Hierarchy Associative

Relationships

After: Amy Warner. *Metadata and Taxonomies for a More Flexible Information Architecture*
Q: How do you share a vocabulary across (and outside of) the enterprise?
A: With standards

- **ISO 2788:1986** Guidelines for the Establishment and Development of Monolingual Thesauri
- **ISO 5964:1985** Guidelines for the Establishment and Development of Multilingual Thesauri
- **ISO 25964** (combines 2788 and 5964) Thesauri and Interoperability with other Vocabularies
- **Zthes** specifications for thesaurus representation, access and navigation
- **W3C SKOS** Simple Knowledge Organization System
Why SKOS? According to Alistair Miles …

- **Ease of combination** with other standards
 - Vocabularies are used in great variety of contexts.
 - E.g., databases, faceted navigation, website browsing, linked open data, spellcheckers, etc.
 - Vocabularies are re-used in combination with other vocabularies.
 - E.g., [ISO3166 country codes](https://en.wikipedia.org/wiki/ISO_3166-1) + [USAID regions](https://www.usaid.gov); USPS zip codes + [US Congressional districts](https://www.comptroller.gov); USPS states + [EPA regions](https://www.epa.gov), etc.

- **Flexibility and extensibility** to cope with variations in structure and style
 - Variations between types of vocabularies
 - E.g., list vs. classification scheme
 - Variations within types of vocabularies
Why SKOS? (2)

- **Publish managed vocabularies** so they can readily be consumed by applications
 - Identify the concepts
 - What are the named entities?
 - Describe the relationships
 - Labels, definitions and other properties
 - Publish the data
 - Convert data structure to standard format
 - Put files on an http server (or load statements into an RDF server)

- **Ease of integration** with external applications
 - Use web services to use or link to a published concept, or to one or more entire vocabularies.
 - E.g., Google maps API, NY Times article search API, Linked open data

- **A W3C standard** like HTML, CSS, XML… and RDF, RDFS, and OWL
Semantic relationships

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept</td>
<td>A unit of thought, an idea, meaning, or category of objects or events. A Concept is independent of the terms used to label it.</td>
</tr>
<tr>
<td>Preferred Label</td>
<td>A preferred lexical label for the resource such as a term used in a digital asset management system.</td>
</tr>
<tr>
<td>Alternate Label</td>
<td>An alternative label for the resource such as a synonym or quasi-synonym.</td>
</tr>
<tr>
<td>Broader Concept</td>
<td>Hierarchical link between two Concepts where one Concept is more general than the other.</td>
</tr>
<tr>
<td>Narrower Concept</td>
<td>Hierarchical link between two Concepts where one Concept is more specific than the other.</td>
</tr>
<tr>
<td>Related Concept</td>
<td>Link between two Concepts where the two are inherently "related", but that one is not in any way more general than the other.</td>
</tr>
</tbody>
</table>
Some semantic relationships for IBM

Subject	Predicate	Object
lc:n79142877 | skos:prefLabel | International Business Machines Corporation
lc:n79142877 | skos:altLabel | IBM
lc:n79142877 | skos:altLabel | I.B.M.

My company sells IBM’s XIV product

- IBM’s XIV product
- XIV Storage System
- Originally developed by Israeli company XIV, which was acquired by IBM in 2007
- A high-end disk storage server designed to provide high performance, scalability, and availability in disk storage.

- My company
- IBM
- XIV

- International Business Machines
- My company’s supplier
- IBM is the supplier

- My company’s product
- XIV
- XIV is My company’s product

- My company’s product name
- XIV
- XIV is My company’s product name

- My company’s product description
- XIV
- XIV is My company’s product description

- My company’s product history
- XIV
- XIV is My company’s product history
What is the semantic web?

- Making content web-accessible in a format that can be read and used by automated tools, so that people and machines can find, share and integrate information more easily.

- Some current examples, especially if they use semantics as the basis for that integration.
 - **Dynamic Web Pages** – Content changes in response to different contexts or conditions.
 - **Personalization** – Tailoring to a user based on personal details or characteristics they provide (or are inferred based on other information).
 - **Mashups** – Combining data from more than one source into an integrated application.
Web publishing case study
http://store.samhsa.gov/

- SAMHSA Taxonomy promotes the agency behavioral health program.
- The taxonomy powers the SAMHSA Store as illustrated in a YouTube video, and also provides:
 - The framework for agency key performance indicators.
 - Increases the availability and visibility of SAMHSA information.
 - Offers tools for analysis, visualization and mash ups with other sources.
Web publishing case study
http://events.oracle.com/

- Oracle taxonomy is based on brand name products marketed by product line, technology, application, and industry solution:
 - The taxonomy powers the Oracle events website, provisioning:
 - Filters based on search results.
 - Mashup with Google maps.
 - RSS feed to subscribe to criteria of this result set.
 - Register, view details, or email info.
The taxonomy also powers the Oracle newsroom website, provisioning:

- Filters based on search results.
- RSS feed to subscribe to criteria of this result set.
- Social networking services including:
 - Email item
 - Bookmark and share
Oracle semantic model

Person → Organization → Location → Content Type → Audience → Products

- Product Line
- Technology
- Application
- Industry Solution

“Is a” groups of Products
Information collaboration:
Managed vocabularies and business rules

- Vocabularies can do more than sell vacations, cars, and cruises.
- Vocabularies can help us decipher complex issues
 - Help citizens select health insurance policies.
 - Help parents find advice on handling with under-age drinking.
 - Help high school juniors find colleges with particular programs.
 - Help pharmacists find generic drugs to substitute for brand names.
 - Help nurses identify side-effects of medication or medical devices.
 - Help telephone sales reps correctly describe packaged products.
 - Help procurement professionals purchase computer equipment.
 - Help managers share better management practices.
QUESTIONS?

Joseph A Busch, Principal

jbusch@taxonomystrategies.com
twitter.com/joebusch
415-377-7912
Semantic Metadata: A Tale of Two Types of Vocabularies

Semantic metadata is metadata that is expressed using a standard syntax that can be commonly processed by applications and tools. There is always an implied statement in any description or "classification" of an object, for example, <News Item><Topic><US Presidential Election 2012>. This is a subject-predicate-object triple, or more specifically, a class-attribute-value triple. The first two elements of the triple – class, attribute – are metadata elements with a defined semantic relationship. The third element is a value, from a controlled vocabulary. This talk discusses the two types of vocabularies involved with semantic metadata, the class-attribute vocabulary, and the value vocabulary. Examples of standard metadata vocabularies such as Dublin Core and FOAF, and canonical lists of named entities (people, organizations, places, events and things) especially well-branded names such as products and services will be shown. Finally, the talk will comment on how the two types of vocabularies are enabling the growth of the linked data cloud, and what this means for online business, publishers and consumers.