

What's SKOS, What's not, Why and What Should be Done About It

Joseph Busch

What is the problem we are trying to solve?

- Vocabularies are used in a great variety of contexts
 - E.g., databases, faceted navigation, website browsing, linked open data, spellcheckers, etc.
- Vocabularies are re-used in combination with other vocabularies.
 - E.g., <u>ISO3166 country codes</u> + <u>USAID regions</u>; USPS zip codes + <u>US</u>
 <u>Congressional Districts</u>; <u>USPS States</u> + <u>EPA regions</u>, etc.
- It's a common requirement to share vocabularies across an organization, (and sometimes also outside an organization)
 - Sometimes this is called an enterprise taxonomy.

What choices are available to solve this problem?

- ANSI/NISO Z39.19-2005 Guidelines for the Construction, Format, and Management of Monolingual Controlled Vocabularies
- ISO 25964 Thesauri and Interoperability with other Vocabularies:
 - Part 1-Thesauri for information retrieval
 - Part 2-Interoperability with other vocabularies
- Zthes specifications for thesaurus representation, access and navigation
- W3C SKOS Simple Knowledge Organization System

What is SKOS?

- SKOS is a common data model for knowledge organization systems (KOS) such as thesauri, classification schemes, subject heading systems and taxonomies.
- Using SKOS, a knowledge organization system can be expressed as machine-readable data, that can then be exchanged between computer applications and published in a machine-readable format in the Web.
- The SKOS data model is defined as an OWL* ontology. SKOS data are expressed as RDF** triples, and may be encoded using any RDF syntax.

^{*} OWL = Web Ontology Language for authoring ontologies

^{**} RDF = Resource Description Framework for modeling information

Original SKOS requirements

- Represent the concept labels (preferred or not) for display or to search.
- Represent relationships between concepts for display or to search.
- Represent lexical information in multiple languages.
- Represent text descriptions attached to concepts (to help understand how to use them)
- Specialize the SKOS vocabulary for a local application
 - E.g., specific kinds of definitions or notes for concepts, specification of new types of concepts, etc.
- Extend concept schemes with new concepts referring to existing ones.
- Map between concepts from different concept schemes.

Is SKOS under-specified? SKOS is less formal than OWL

- While SKOS is an OWL ontology, it is not intended for encoding more complex ontologies
 - Types of relations that refine semantics beyond is A and is PartOf relations.
- "Using OWL and SKOS" describes several scenarios (http://www.w3.org/2006/07/SWD/SKOS/skos-and-owl/master.html)
 - Overlay SKOS with OWL
 - Transform SKOS to OWL
 - Overlay OWL with SKOS
 - Transform OWL to SKOS
 - Part OWL and Part SKOS

SKOS strengths

- SKOS excels at defining and referencing URIs for named entities, but describing and managing their relationships is sometimes more highly articulated in other schemas like OWL.
- SKOS supports Thesaurus relationships
 - Hierarchical BT/NT (Broader Term/Narrower Term)
 - Associative RT (Related Term)
 - Equivalent UF (Used For term)
 - Notes SN (Scope Note)

Should SKOS be used when a Class is already defined in another schema?

- FOAF and schema.org provide a Person class:
 - Friend of a friend (FOAF) http://xmlns.com/foaf/spec/#term_Person.
 - Schema.org http://schema.org/Person.
- Schema.org also provides classes for:
 - Organization http://schema.org/Organization
 - Place http://schema.org/Place
 - Product http://schema.org/Product
 - Event http://schema.org/Event

Recommended practice

- Use SKOS for mapping properties between concepts in different schemes.
 - SKOS-XL provides for explicit relationships between concept labels in different schemes.
- Use FOAF, schema.org and OWL to extend what cannot be expressed with SKOS.

Joseph A Busch, Principal jbusch@taxonomystrategies.com
Twitter @joebusch
Mobile 415-377-7912

QUESTIONS?

Resources

- ANSI/NISO Z39.19-2005 Guidelines for the Construction, Format, and Management of Monolingual Controlled Vocabularies
- FOAF Vocabulary Specification 0.99 (January 2014)
- ISO 25964 Thesauri and Interoperability with other Vocabularies: Part 1-Thesauri for information retrieval, Part 2-Interoperability with other vocabularies.
- schema.org <u>Organization of Schemas</u> (n.d.)
- SKOS Reference: W3C Recommendation (August 2009)
- SKOS Use Cases and Requirements: W3C Working Group Note (August 2009)
- SKOS Simple Knowledge Organization System Namespace <u>Document</u> (August 2009)
- Using OWL and SKOS (May 2008)

Abstract

SKOS is an under-specified framework for encoding knowledge organization schemes. This is a problem with generic frameworks, and can be addressed by using other namespaces such as FOAF (Friend of a Friend) which provides a vocabulary specification for people, their relationships to each other and to other types of named entities; and Schema.org a collection of schemas to mark-up named entities in web published content so that they can be readily parsed and processed by search engines and searchers.