Metadata Interoperability & Findability Workshop
Business consultants who specialize in applying taxonomies, metadata, automatic classification, and other information retrieval technologies to the needs of business and government.

Leadership in enterprise content management, knowledge management e-commerce, e-learning and web publishing.

Spin-off from Metacode Technologies, developer of XML metadata repository, automated categorization methods and taxonomy editor acquired by Interwoven in 2000 (now part of Autonomy).

More than 30 years experience in digital text and image management.

Metadata and taxonomy community leadership.

- President, American Society for Information Science & Technology
- Dublin Core Metadata Initiative Board Member
- American Library Association Committee on Accreditation External Reviewer

What do you hope to get out of this workshop?
Interoperability

- The ability of diverse systems and organizations to work together by exchanging information.
- Semantic interoperability is the ability for systems to automatically interpret the information exchanged meaningfully and accurately.
Interoperability ROI

- Information assets are expensive to create so it’s critical that they can be found, so they can be used and re-used by business users to support business activities.
- Every re-use decreases the asset creation cost and increases the asset value.
Interoperability (2)

- If information assets are so important, why can’t they be found?
 - There is no metadata, or the metadata is incomplete and inconsistent.
 - There is no searchable text (data, graphics, visualizations, etc.)
 - They exist in different applications, file shares and/or desktops.
 - They have been discarded or lost.
 - … Other reasons?

- When they are found why can’t assets be reused?
 - When there are multiple versions, it’s difficult to choose which one to use.
 - The source, accuracy and/or authority are unclear.
 - The usage rights may not be clear.
 - … Other reasons?
Interoperability (3)

- Information assets are sourced from multiple applications and locations
 - Product lifecycle management (PLM) application
 - Product information management (PIM) application
 - Third party contractors’ systems
 - In-house graphic design department
 - Marketing and Communications servers

- Hosting videos on YouTube and linking to your website
- Hosting presentations on SlideShare or any other public, commercial social platform
- Hosting archived, email newsletters on MailChimp

- …Other applications and locations?
Interoperability vision

- I want to easily find any assets in a particular format that can be used for a specific purpose regardless of where they are located.
- Challenges:
 - How to align different metadata properties
 - E.g., Title and Caption; Location and Setting; etc.
 - How to align different vocabularies
 - E.g., CA and California; RiM and Research in Motion; etc.
Named Entities Exercise
People

<table>
<thead>
<tr>
<th>Arroyo, Gloria</th>
<th>Gingrich, Newt</th>
<th>Powell, Colin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atkinson, Rowan</td>
<td>Giuliani, Rudolph</td>
<td>Prince</td>
</tr>
<tr>
<td>Baldwin, Alec</td>
<td>Goldberg, Whoopi</td>
<td>Prince Charles</td>
</tr>
<tr>
<td>Bale, Christian</td>
<td>Gore, Al</td>
<td>Prince William</td>
</tr>
<tr>
<td>Banderas, Antonio</td>
<td>Grace, Nancy</td>
<td>Putin, Vladimir</td>
</tr>
<tr>
<td>Baron Cohen, Sacha</td>
<td>Grant, Hugh</td>
<td>Qaddafi, Muammar</td>
</tr>
<tr>
<td>Barrymore, Drew</td>
<td>Griffin, Kathy</td>
<td>Queen Elizabeth II</td>
</tr>
<tr>
<td>Beck, Glenn</td>
<td>Grisham, John</td>
<td>Queen Latifah</td>
</tr>
<tr>
<td>Beckham, David</td>
<td>Hagel, Chuck</td>
<td>Rather, Dan</td>
</tr>
</tbody>
</table>

Who are some important people whose names should be managed? ... and why? ...

bin Laden, Osama	Hastert, Dennis	Richardson, Bill
Blair, Tony	Havel, Vaclav	Rivera, Geraldo
Blanchett, Cate	Hawking, Stephen	Robbins, Tim
Bono	Hayek, Salma	Roberts, Julia
Branson, Richard	Hilton, Paris	Robertson, Pat
Brown, Dan	Hoffman, Dustin	Rock, Chris
Brownback, Sam	Holmes, Katie	Rove, Karl
Bryant, Kobe	Houston, Whitney	Rowling, J.K.
Buffett, Warren	Howard, John	Sandler, Adam
Burton, Tim	Hudson, Kate	Santorum, Rick

* courtesy of mondostars.com
What are some important organizations whose names you need to manage? ... and why? ...
What are some important products and services whose names you need to manage? ... and why? ...
What are some key events whose names you need to manage? … and why? …
What are some significant locations whose names you need to manage? … and why? …
What are managed vocabularies

- Names of people, organizations, products, events, locations, etc.
 - Alternate labels
 - Synonyms
 - Abbreviations
 - Acronyms
 - etc.
 - Additional information
 - Unique identifiers
 - Coverage dates
 - Descriptions
 - etc.

- A set of concepts, optionally including statements about semantic relationships between those concepts.
Agenda

- Problems with metadata
- Two types of vocabularies
- Modeling value spaces
- Integrating taxonomy and metadata
- Business intelligence tools requirements
Problems with metadata

- Inconsistent category assignments
 - CA vs. California
 - RiM vs. Research in Motion

- Changes to classification systems over time
 - ICD-9 vs. ICD-10
 - SIC vs. NAICS

- Use of multiple overlapping or different categorization schemes
 - States vs. SMSA’s
 - ICD-9 vs. CDC Diseases and Conditions
 - NASA Taxonomy vs. NASA Thesaurus
Case Study: Inconsistent categories (1)

Problem:

- Inaccurate reporting with incorrect product counts at global health and beauty products company.
- Some SKUs are sold as units, as well as a part of a kit, a set and/or a bill of materials.
- Lacked a consistent, standard language to enable data sharing including:
 - Rules for SKUs.
 - Business processes related to product data.
 - Product data definitions.
 - Single owner for data elements.
 - Roles and responsibilities related to product data.
 - Product data integration points and relationships.
Case Study: Inconsistent categories (2)

Solution:
- Faceted SKU taxonomy instead of a single, monolithic taxonomy tree
 - More flexible design.
 - Describe every item with a combination of facets.
 - Focus on universal facets applied to all products, or to all products within a large grouping such as a product line.
Case Study: Inconsistent categories (3)

- **Distinguishes products that are specifically intended for one or more age groups.**
- **Distinguishes between products for women and products for men.**
- **Regions and locales within regions that identify target markets or business regions.**
- **Short description of the product.**
- **Indicates type of measure such as number of items, or fluid ounces or milliliters.**

Major grouping of products based on lines of business. A SKU can be in one or more product lines.

A single product or family of products with a distinct, copyrighted, and sometimes trademarked label.

Broad, generic categories used to organize and group products for merchandising and/or business purposes.

A key, active ingredient that is part of the formulation that yields the desired effect in the product.

Indicates whether a product is composed of one or multiple SKUs. If the product is a kit, set or custom assembled BOM, then the component SKUs need to be identified.
Case Study: Multiple categorization schemes (1)

Problem:

- Need to promote agency *behavioral health* program to heterogeneous audiences:
 - Human services professionals
 - Concerned family
 - Policy makers
- Merge heterogeneous information sources:
 - Alcohol and drug information
 - Mental health information
 - Other agency and inter-agency resources
 - Drug Abuse Warning Network (DAWN)
 - Treatment Episode Data Set (TEDS)
 - Uniform Reporting System (URS)
Solution:

- Faceted content tagging and navigation taxonomy
 - Powers the SAMHSA Store as illustrated in a YouTube video
 - The framework for agency key performance indicators.
 - Increases the availability and visibility of SAMHSA information.
 - Offers tools for analysis, visualization and mash ups with other sources.
Case Study: Multiple categorization schemes (3)

SAMHSA Store Taxonomy facets
Case Study: Multiple categorization schemes (4)
Case Study: Multiple categorization schemes (5)

SAMHSA Info Tools
To obtain interoperability we need to

- Normalize metadata schemas across heterogeneous content management systems.
- Standardize metadata values and the relationships between them, especially term strings.
Agenda

- Problems with metadata
- Two types of vocabularies
- Modeling value spaces
- Integrating taxonomy and metadata
- Business intelligence tools requirements
There are two types of vocabularies

- Concept schemes – metadata schemes like Dublin Core
- Semantic schemes – value vocabularies like taxonomies, thesauri, ontologies, etc.
What is metadata?

- Metadata provides enough information for any user, tool, or program to find and use any piece of content.

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Enabled Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset metadata – Who: Identifier, Creator, Title, Description, Publisher, Format, Contributor</td>
<td>Use metadata – When & How: Date, Language, Rights</td>
</tr>
<tr>
<td>Subject metadata – What, Where & Why: Subject, Type, Coverage</td>
<td>Relational metadata – Links between and to: Source, Relation</td>
</tr>
</tbody>
</table>

http://dublincore.org/documents/dces/
What is metadata

- Metadata provides enough information for any user, tool, or program to find and use any piece of content.

Asset metadata
- **Who:** Identifier, Creator, Title, Description, Publisher, Format, Contributor
- **What, Where & Why:** Subject, Type, Coverage

Use metadata
- **When & How:** Date, Language, Rights

Subject metadata
- **What, Where & Why:** Subject, Type, Coverage

Relational metadata
- **Links between and to:** Source, Relation

Better navigation & discovery

More efficient editorial process

Enabled Functionality

But Dublin Core is a little more complicated

<table>
<thead>
<tr>
<th>Elements</th>
<th>Refinements</th>
<th>Encodings</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identifier</td>
<td>Abstract</td>
<td>Box</td>
<td>Collection</td>
</tr>
<tr>
<td>2. Title</td>
<td>Access rights</td>
<td>DCMIType</td>
<td>Dataset</td>
</tr>
<tr>
<td>3. Creator</td>
<td>Alternative</td>
<td>DDC</td>
<td>Event</td>
</tr>
<tr>
<td>4. Contributor</td>
<td>Audience</td>
<td>IMT</td>
<td>Image</td>
</tr>
<tr>
<td>5. Publisher</td>
<td>Available</td>
<td>ISO3166</td>
<td>Interactive</td>
</tr>
<tr>
<td>6. Subject</td>
<td>Bibliographic citation</td>
<td>ISO639-2</td>
<td>Resource</td>
</tr>
<tr>
<td>7. Description</td>
<td>Conforms to</td>
<td>LCC</td>
<td>Moving Image</td>
</tr>
<tr>
<td>8. Coverage</td>
<td>Created</td>
<td>LCSH</td>
<td>Physical Object</td>
</tr>
<tr>
<td>9. Format</td>
<td>Date accepted</td>
<td>MESH</td>
<td>Service</td>
</tr>
<tr>
<td>10. Type</td>
<td>Date copyrighted</td>
<td>Period</td>
<td>Software</td>
</tr>
<tr>
<td>11. Date</td>
<td>Date submitted</td>
<td>Point</td>
<td>Sound</td>
</tr>
<tr>
<td>12. Relation</td>
<td>Education level</td>
<td>RFC1766</td>
<td>Still Image</td>
</tr>
<tr>
<td>13. Source</td>
<td>Extent</td>
<td>RFC3066</td>
<td>Text</td>
</tr>
<tr>
<td>14. Rights</td>
<td>Has format</td>
<td>TGN</td>
<td></td>
</tr>
</tbody>
</table>
DCAM (Dublin Core Abstract Model) Singapore Framework

Application profile: Schema which consists of data elements drawn from one or more namespaces, combined together by implementers, and optimized for a particular local application.
Dublin Core is the top vocabulary in the linked data cloud

<table>
<thead>
<tr>
<th>Vocabulary prefix</th>
<th>Vocabulary link</th>
<th>Number of usages in data sets</th>
<th>Data sets that use the vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc</td>
<td>http://purl.org/dc/elements/1.1/</td>
<td>92 (31.19 %)</td>
<td>Data sets that use dc</td>
</tr>
<tr>
<td>foaf</td>
<td>http://xmlns.com/foaf/0.1/</td>
<td>81 (27.46 %)</td>
<td>Data sets that use foaf</td>
</tr>
<tr>
<td>skos</td>
<td>http://www.w3.org/2004/02/skos/core#</td>
<td>58 (19.66 %)</td>
<td>Data sets that use skos</td>
</tr>
<tr>
<td>geo</td>
<td>http://www.w3.org/2003/01/geo/wgs84_pos#</td>
<td>25 (8.47 %)</td>
<td>Data sets that use geo</td>
</tr>
<tr>
<td>xhtml</td>
<td>http://www.w3.org/1999/xhtml/vocab#</td>
<td>19 (6.44 %)</td>
<td>Data sets that use xhtml</td>
</tr>
<tr>
<td>akt</td>
<td>http://www.aktors.org/ontology/portal#</td>
<td>17 (5.76 %)</td>
<td>Data sets that use akt</td>
</tr>
<tr>
<td>bibo</td>
<td>http://purl.org/ontology/bibo/</td>
<td>14 (4.75 %)</td>
<td>Data sets that use bibo</td>
</tr>
<tr>
<td>mo</td>
<td>http://purl.org/ontology/mo/</td>
<td>13 (4.41 %)</td>
<td>Data sets that use mo</td>
</tr>
<tr>
<td>vcard</td>
<td>http://www.w3.org/2006/vcard/ns#</td>
<td>10 (3.39 %)</td>
<td>Data sets that use vcard</td>
</tr>
<tr>
<td>sioc</td>
<td>http://rdfs.org/sioc/ns#</td>
<td>10 (3.39 %)</td>
<td>Data sets that use sioc</td>
</tr>
<tr>
<td>cc</td>
<td>http://creativecommons.org/ns#</td>
<td>8 (2.71 %)</td>
<td>Data sets that use cc</td>
</tr>
<tr>
<td>geonames</td>
<td>http://www.geonames.org/ontology#</td>
<td>6 (2.03 %)</td>
<td>Data sets that use geonames</td>
</tr>
<tr>
<td>frbr</td>
<td>http://purl.org/vocab/frbr/core#</td>
<td>6 (2.03 %)</td>
<td>Data sets that use frbr</td>
</tr>
<tr>
<td>xsd</td>
<td>http://www.w3.org/2001/XMLSchema#</td>
<td>6 (2.03 %)</td>
<td>Data sets that use xsd</td>
</tr>
<tr>
<td>time</td>
<td>http://www.w3.org/2006/time#</td>
<td>5 (1.69 %)</td>
<td>Data sets that use time</td>
</tr>
<tr>
<td>event</td>
<td>http://purl.org/NET/c4dm/event.owl#</td>
<td>5 (1.69 %)</td>
<td>Data sets that use event</td>
</tr>
<tr>
<td>dbpedia</td>
<td>http://dbpedia.org/resource/</td>
<td>5 (1.69 %)</td>
<td>Data sets that use dbpedia</td>
</tr>
<tr>
<td>gr</td>
<td>http://purl.org/goodrelations/v1#</td>
<td>4 (1.36 %)</td>
<td>Data sets that use gr</td>
</tr>
</tbody>
</table>

http://www4.wiwiss.fu-berlin.de/lodcloud/state/#structure
MDM model that integrates taxonomy and metadata

Taxonomies, Vocabularies, Ontologies

Dublin Core

Per-Source Data Types, Access Controls, etc.

Source: Todd Stephens, BellSouth
Why Dublin Core? According to Todd Stephens …

- Dublin Core is a de-facto standard across many other systems and standards
 - RSS (1.0), OAI (Open Archives Initiative), SEMI E36, etc.
 - Inside organizations – ECMS, SharePoint, etc.

- Mapping to DC elements from most existing schemes is simple.
- Metadata already exists in enterprise applications
 - Windchill, OpenText, MarkLogic, SAP, Documentum, MS Office, SharePoint, Drupal, etc.
Dates, roles and topics

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
<th>Set By</th>
</tr>
</thead>
<tbody>
<tr>
<td>date.added</td>
<td>Date the asset was first added to the DAM.</td>
<td>DAM</td>
</tr>
<tr>
<td>date.lastModified</td>
<td>Date the asset was last reviewed for accuracy and relevance. Used for provenance and to validate content or rights.</td>
<td>DAM</td>
</tr>
<tr>
<td>date.reviewed</td>
<td>Date the content was last reviewed for accuracy and relevance. Used for provenance, and to compute a future date to recheck the content.</td>
<td>DAM</td>
</tr>
<tr>
<td>date.nextReviewed</td>
<td>Date of next scheduled review for accuracy and relevance.</td>
<td>Rule</td>
</tr>
<tr>
<td>date.embargoed</td>
<td>Date and time that content is scheduled to become available on the site. Content can be prepared in advance and system will push it out once the embargo date is reached.</td>
<td>Manual</td>
</tr>
<tr>
<td>date.subject</td>
<td>Date of the event, data, or other information depicted in the asset. Used for search and recall purposes. (This is not the date the asset was uploaded or last updated).</td>
<td>Manual</td>
</tr>
</tbody>
</table>
Dublin Core dates

- “A date associated with an event in the life cycle of the resource”
- Woefully underspecified.
- Typically the publication or last modification date.
- Best practice: YYYY-MM-DD

Refinements
- Created
- Valid
- Available
- Issued
- Modified
- Date Accepted
- Date Copyrighted
- Date Submitted

Encodings
- DCMI Period
- W3C DTF (Profile of ISO 8601)
Dates, roles and topics

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
<th>Admin</th>
<th>Add</th>
<th>Edit</th>
<th>Delete</th>
<th>Approve</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator</td>
<td>Technical administration of the DAM. Generally allowed to do anything, to keep the system running and up-to-date.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Approver</td>
<td>Senior DAM staff with the authority to approve assets for publication. In small shops Contributors may also be Approvers. Larger shops, and those using outsider contractors will have many Contributors but just a few Approvers.</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Contributor</td>
<td>Editorial staff with authority to contribute new assets to the DAM. Their work must be approved by an Approver before it can be published. Administrators have the authority to approve content for publication, but only as an exception not the rule.</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>
After: Amy Warner. *Metadata and Taxonomies for a More Flexible Information Architecture*
Q: How do you share a vocabulary across (and outside of) the enterprise?
A: With standards

- **ISO 2788:1986** Guidelines for the Establishment and Development of Monolingual Thesauri
- **ISO 5964:1985** Guidelines for the Establishment and Development of Multilingual Thesauri
- **ISO 25964** (combines 2788 and 5964) Thesauri and Interoperability with other Vocabularies
- **Zthes** specifications for thesaurus representation, access and navigation
- **W3C SKOS** Simple Knowledge Organization System
Agenda

- Problems with metadata
- Two types of vocabularies
- Modeling value spaces
- Integrating taxonomy and metadata
- Business intelligence tools requirements
Modeling value spaces

- SKOS-Simple Knowledge Organization System for use with metadata standards to mark-up vocabularies
 - Dublin Core
 - STEP- Standard for the Exchange of Product Model Data
 - SEMI- Semiconductor Equipment and Materials International
Why SKOS? According to Alistair Miles …

- **Ease of combination** with other standards
 - Vocabularies are used in great variety of contexts.
 - E.g., databases, faceted navigation, website browsing, linked open data, spellcheckers, etc.
 - Vocabularies are re-used in combination with other vocabularies.
 - E.g., [ISO3166 country codes](https://en.wikipedia.org/wiki/ISO_3166-1) + [USAID regions](https://www.usaid.gov); [USPS zip codes](https://www.usps.com) + [US Congressional districts](https://www.congress.gov); [USPS states](https://www.usps.com) + [EPA regions](https://www.epa.gov), etc.

- **Flexibility and extensibility** to cope with variations in structure and style
 - Variations between types of vocabularies
 - E.g., list vs. classification scheme
 - Variations within types of vocabularies
Why SKOS? (2)

- **Publish managed vocabularies** so they can readily be consumed by applications
 - Identify the concepts
 - What are the named entities?
 - Describe the relationships
 - Labels, definitions and other properties
 - Publish the data
 - Convert data structure to standard format
 - Put files on an http server (or load statements into an RDF server)

- **Ease of integration** with external applications
 - Use web services to use or link to a published concept, or to one or more entire vocabularies.
 - E.g., [Google maps API](https://developers.google.com/maps), [NY Times article search API](https://developer.nytimes.com), [Linked open data](https://www.w3.org/2001/sw/)

- **A W3C standard** like HTML, CSS, XML… and RDF, RDFS, and OWL
Semantic relationships

<table>
<thead>
<tr>
<th>Concept</th>
<th>A unit of thought, an idea, meaning, or category of objects or events. A Concept is independent of the terms used to label it.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred Label</td>
<td>A preferred lexical label for the resource such as a term used in a digital asset management system.</td>
</tr>
<tr>
<td>Alternate Label</td>
<td>An alternative label for the resource such as a synonym or quasi-synonym.</td>
</tr>
<tr>
<td>Broader Concept</td>
<td>Hierarchical link between two Concepts where one Concept is more general than the other.</td>
</tr>
<tr>
<td>Narrower Concept</td>
<td>Hierarchical link between two Concepts where one Concept is more specific than the other.</td>
</tr>
<tr>
<td>Related Concept</td>
<td>Link between two Concepts where the two are inherently "related", but that one is not in any way more general than the other.</td>
</tr>
</tbody>
</table>
Agenda

- Problems with metadata
- Two types of vocabularies
- Modeling value spaces
- Integrating taxonomy and metadata
- Business intelligence tools requirements
Negotiations With Iran Over Nuclear Program May Resume

By STEVEN LEE MYERS and RICK GLADSTONE
Published: February 17, 2012

WASHINGTON — The United States and the European Union signaled on Friday that negotiations with Iran over its nuclear program could soon resume for the first time, even as a telecommunications network vital to the global banking industry prepared to expel Iranian banks.

While senior American and European officials stopped short of declaring a diplomatic breakthrough, Iran dropped previously unacceptable preconditions for talks in a letter this week from its senior nuclear negotiator, Saeed Jalili, who declared his country’s “readiness for dialogue” at “the earliest possibility.”

After weeks of official bluster, ominous threats of military assassination attempts...
Microformats require metadata and taxonomy

Google’s new right rail
The Tagging Problem

- How are we going to populate metadata elements with complete and consistent values?
- What can we expect to get from automatic classifiers?
Cheap and Easy Metadata

- Some fields will be constant across a collection
 - e.g., format, color, photographer or location
- In the context of a single collection those kinds of elements may add little value, but they add tremendous value when many collections are brought together into one place, and they are cheap to create and validate.
4 Indexing rules: How to use the taxonomy to tag content

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use specific terms</td>
<td>Apply the most specific terms when tagging content. Specific terms can always be generalized, but generic terms cannot be specialized.</td>
</tr>
<tr>
<td>Use multiple terms</td>
<td>Use as many terms as necessary to describe What the content is about & Why it is important.</td>
</tr>
<tr>
<td>Use appropriate terms</td>
<td>Only fill-in the facets & values that make sense. Not all facets apply to all content.</td>
</tr>
<tr>
<td>Consider how content will be used</td>
<td>Anticipate how the content will be searched for in the future, & how to make it easy to find it. Remember that search engines can only operate on explicit information.</td>
</tr>
</tbody>
</table>
Methods used to create & maintain metadata

- Paper or web-based forms widely used:
 - Distributed resource origination metadata tagging
 - Centralized clean-up and metadata entry.

Source: CEN/ISSS Workshop on Dublin Core.
Tagging considerations

- Who should tag assets? Producers or editors?
- Taxonomy is often highly granular to meet task and re-use needs, but with detailed taxonomy it’s difficult to get complete and consistent tags.
- The more tags there are (and the more values for each tag), the more hooks to the content, but the more difficult it is to get completeness and consistency.
- If there are too many tags or tags are too detailed, producers will resist and use “general” tags (if available)
- Vocabulary is often dependent on originating department, but the lingo may not be readily understood by people outside the department (who are often the users).
Tagging considerations (2)

- Automatic classification tools exist, and are valuable, but results are not as good as people can do.
 - “Semi-automated” is best.
 - Degree of human involvement is a cost/benefit tradeoff.
Tools for tagging

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Taxonomy Editing Tools</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomy Collaborative Classifier</td>
<td>www.autonomy.com/content/Functionality/idol-functionality-categorization/index.en.html</td>
<td></td>
</tr>
<tr>
<td>ConceptSearching</td>
<td>www.conceptsearching.com</td>
<td></td>
</tr>
<tr>
<td>Intelligent Topic Manager</td>
<td>www.mondeca.com/Products/ITM</td>
<td></td>
</tr>
<tr>
<td>PoolParty Extractor</td>
<td>poolparty.biz/products/poolparty-extractor/</td>
<td></td>
</tr>
<tr>
<td>Semaphore Classification and Text Mining Server</td>
<td>www.smartlogic.com/home/products_semaphore-modules/classification-and-text-mining-server/overview</td>
<td></td>
</tr>
<tr>
<td>Temis Luxid® for Content Enrichment</td>
<td>www.temis.com/?id=201&selt=1</td>
<td></td>
</tr>
</tbody>
</table>
Taxonomy tagging tools

Microsoft Office Properties are ubiquitous but rarely used

An immature area—No vendors are in upper-right quadrant! No ECM vendors in this list. Tagging is a “best of breed” application

High functionality /high cost products ($50-100K)
Taxonomy tools and business intelligence

- No taxonomy tool vendors have connectors, custom APIs or other direct integrations with leading business intelligence tools.
- SAS acquired Teragram in 2010.
 - Teragram is primarily an OEM business, not integrated with SAS business intelligence products.
- Business Objects acquired Inxight in 2007, which was acquired by SAP in 2008.
 - Inxight is not evident in SAP business intelligence products.
What did you get out of this workshop?
Thank You

QUESTIONS

Joseph Busch
jbusch@taxonomystrategies.com
(415) 77-7912
twitter.com/joebusch

Vivian Bliss
vbliss@taxonomystrategies.com
(425) 417-7628